Appendix F Window Sampler Logs

	Aurecon I Unit 1, 15 PO BOX Christchu New Zeal www.aure	(New Ze 50 Caver 1061 urch 8144 land econgrou	PCC aland) Li dish Roa) p.com	imited ad Telep Facs	phone: +	-64 3 366 -64 3 37	Client: Ngai Project Name: Location: Pre	Tahu Proper Prestons R stons Road, C ence: 223488	ty Ltd & Cl oad Subdi Christchur	DL L visic ch	ano on	d L1	td			CP	P T •	11	5
BOI Drill Diar Cor	REHO ling M meter	DLE IN lethod Core or:	IFOR CF	PT Rig	ON g with n Drill	Winc	low Sampler Ea Nc Gr	o-ORDINATES N/A sting: N/A rthing: N/A ound Level: N/A		Date S Date O Inclina Orient	Starte Comp ation: tatior	ed: pletec	30/ 1: 30/	/01/20 /01/20)12)12	Logged by: Input by: Checked by: Verified by:	tjm, pta pta JSM JK		
Method/Casing	Core Recovery (%)	Water Loss (%)	Groundwater Level (m)	R.L. (m)	Depth (m)	Graphic Log	Ma	terial Description	I		USC Description	Consistency/Density	Moisture	Sample	In-Situ Testing	Laboratory Testing	Notes	Backfill	Geological Unit
					- 1		No sampling.												
DP	100	-	NOT RECORDED		- 4 - 5 - 6		3.70 SAND, brownish gr grained and uniforn	ey, wet, sand is fi Ily graded.	ne to mediun	n	SP		w			NO LABORATORY TESTING			
					8		Borehole Terminate	d at 6.5m (Targe	t Depth)										
Met CC OB SS HSA PQ SS HSA PQ SS HSA DP DT	ihod cc op A sc SH wa 3 PC 3 Hi 3 No LC Di C	Dencret ben ba blid ste blows ash di Q Trip Q Trip Q Trip Q Trip MLC irect F ual Tu asing	e core arrel em au stem a le Tul le Tul le Tul ple Tu ple Tu ple tush be (7	liger auger be be Jbe Tube Tube		Clay Inorg Inorg Clay Poor Well Inorg ORG ORG ORG ORG ORG ORG ORG ORG ORG ORG	ssification anic CLAYS high plasticity anic CLAYS medium plasticity anic CLAYS tow plasticity anic CLAYS tow plasticity anic SLT ios plasticity anic SLT ios plasticity anic SLT iow plasticity anic SLT iow plasticity ANIC SLAY medium high plastici T and highlw plasticities and state of the state of the state SAND by graded SAND graded SAND	Consistency VS very soft S soft S stiff VS very stiff H hard Density VL very loose L loose D dense D dense VD very dense	Soil Samples B bulk U undisturbed D disturbed Water ✓ at end of excavation ¥ at time of excavation ¥ at time of closure	In Situ PP pr VS v3 SPT st SC ss SC ss HB hi SH si Moistu D dry M mo W we S sat	Testi en pe ane s td. pe plit sp olid co amme inks u ure , ist t urate	ing enetroi hear en tes boon one er bou inder o Ba	meter t incing own v	veight	Graphic Log		1		

Database File: SAMPLES LOG.GPJ, Library: AURECON CHRISTCHURCH.GLB, Data template: CHCH DATA TEMPLATE NOV 2010.GDT

A F C N	Aurecon I Jnit 1, 15 PO BOX Christchu New Zeal	(New Zes 50 Caven 1061 urch 8140 land econgrou	PC aland) Lin dish Roa) p.com	mited ad Tele Face	phone: +	+64 3 366 +64 3 379	Client: N Project Nar Location: F Project Ref	gai Tahu Proper ne: Prestons R Prestons Road, (erence: 223488	ty Ltd & C oad Subd Christchur	DL L ivisi ch	.and on	d Lt	td			CF	T ·	12	7
BOF Drilli Diar Con	REHO ing M neter tracto	DLE IN lethod Core or:	IFOR CF MC	MAT MAT TRiç	roup.cor I ON g with n Drill	" Wind	ow Sampler	CO-ORDINATES N/A Easting: N/A Northing: N/A Ground Level: N/A		Date Date Inclin Orier	Starte Comp ation: ntatior	ed: pleteo : n:	30/ 1: 30/	/01/20 /01/20	012 012	Logged by: Input by: Checked by: Verified by:	tjm, pta Pta JSM JK		
Method/Casing	Core Recovery (%)	Water Loss (%)	Groundwater Level (m)	R.L. (m)	Depth (m)	Graphic Log		Material Descriptior	1		USC Description	Consistency/Density	Moisture	Sample	In-Situ Testing	Laboratory Testing	Notes	Backfill	Geological Unit
DP	100		NOT RECORDED		- 1 - 2 - 3		No sampling.	wnish grey, saturated and uniformly grade	d, sand is find	e to	SP		S			NO LABORATORY TESTING			
Met CC SSA HSA PQ33 NMI NMI DP DT	hod cop sc sc sc sc sc sc sc no sc sc sc sc sc sc sc sc sc sc sc sc sc	oncrete ben ba blid ste blow s blow s ash dr Q Trip Q Trip Q Trip MLC 1 irect P ual Tu asing	e core arrel em au stem a ill le Tub le Tub ole Tub ole Tub riple vish	ger auger be be Tube 0mm)		Claye Inorg Inorg Claye Silty Poorl Well Inorg Inorg ORG ORG ORG ORG ORG ORG ORG ORG ORG ORG	isid and the plasticity inic CLAYS medium plasticity inic CLAYS medium plasticity inic CLAYS medium plasticity inic CLAYS tow plasticity (GRAVEL Graded GRAVEL Graded GRAVEL inic SILT high plasticity inic SILT low plasticity inic SILT low plasticity and highly organic soils AND graded SAND graded SAND	Inated abritumen() arge VS very soft F firm VS very stiff H hard Density VL very loose L loose D dense VD very dense	t Beipth)ples B bulk U undisturbed D disturbed Water	In Situ PP F SPT S SS S SC S HB f SH S SH S Moist D dr M mo W wo S sa	u Testi pen pervane s std. pe split sp split split	ing enetroi shear en. tes boon one er bou under Ba	meter t own w	veight	Graphic Log		<u> </u>		<u> </u>

Database File: SAMPLES LOG.GPJ, Library: AURECON CHRISTCHURCH.GLB, Data template: CHCH DATA TEMPLATE NOV 2010.GDT

A L F	urecon Jnit 1, 1 PO BOX Christchu Jew Zea www.aun	(New Zea 50 Caven 1061 urch 8140 land econgrou	PC aland) Li dish Roa	OI mited ad Tele Facs	phone: +	+64 3 366 	Client: Ne Project Nan Location: P	gai Tahu Propert ne: Prestons R Prestons Road, C erence: 223488	y Ltd & Cl oad Subdi hristchur	DL La visio ch	ano	d L1	d			CF	P T •	14	0 of 1
BOF Drilli Diar Con	REHC ng M neter tracto	DLE IN lethod Core or:	IFOR CF	emecong CMATI PT Riç Millar	roup.cor I ON g with n Drill	n Wind	ow Sampler	CO-ORDINATES N/A Easting: N/A Northing: N/A Ground Level: N/A		Date Started: 2/02/2012 Date Completed: 2/02/2012 Inclination: Orientation:			2	Logged by: TJM, PTA Input by: PTA Checked by: JSM Verified by: JK					
Method/Casing	Core Recovery (%)	Water Loss (%)	Groundwater Level (m)	R.L. (m)	Depth (m)	Graphic Log		Material Description			USC Description	Consistency/Density	Moisture	Sample	In-Situ Testing	Laboratory Testing	Notes	Backfill	Geological Unit
					-		No sampling.												
					- 1														
					- 2														
					- 3														
Р		-			- 4		SAND, brownish grained and unif	i grey, wet, sand is fi ormly graded.	ne to mediun	n				-		Ø			
			RECORDED		- 5											RATORY TESTIN			
			TON		- 6											NO LABO			
	100										SP		W						
					- 7														
					- 8		8.50												
					- 9		Borehole Termir	nated at 8.5m (Targe	t Depth)										
					- - - -				1										
Meti CC OB SSA HSA PQ3 NQ3 NQ3 NML DP DT		oncrete blid ste blid ste bllow s ash dr Q Trip Q Trip Q Trip MLC 1 irect P ual Tu asing	e core arrel em au stem a le Tul le Tul ble Tu ple Tu riple ush be (7	e auger be be ube Tube 0mm)	US CCLCGGPGG GGGGGG MLLCOLT SS	C Class Inorga Inorga Inorga Claye Silty (Poorf I Norga Inorga Inorga ORGA ORGA ORGA ORGA ORGA ORGA ORGA ORGA	ssification anic CLAYS high plasticity anic CLAYS medium plasticity anic CLAYS low plasticity y GRAVEL SRAVEL Graded GRAVEL Graded GRAVEL anic SILT low plasticity anic SILT low plasticity and CLAY medium to high pl ANIC SLAY medium to high pl ANIC SLAY medium to high pl ANIC SLAY medium to solis y SAND SAND	Consistency VS very soft S soft F firm VS very stiff H hard Density VL very loose L loose MD medium dense D dense	Soil Samples B bulk U undisturbed D disturbed Water	In Situ PP pe VS va SPT sto SS sp SC so HB ha SH sir Moistur D dry M mois	Testi en pe ane sl d. pe blit sp blid co amme nks u re st	ing enetroi hear n. tes boon one er bou inder i Ba	meter t ncing own w	veight	Graphic Log				

Database File: SAMPLES LOG.GPJ, Library: AURECON CHRISTCHURCH.GLB, Data template: CHCH DATA TEMPLATE NOV 2010.GDT

Appendix G Groundwater Monitoring

Appendix H Laboratory Results

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	SAND	Sample Source:	TP:6 @ 1.0m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	4-Aug-11	Sample Method:	Test Pit			

Additional Notes:

IANZ endorsement of this report applies to the samples as received.

IANZ endorsement of this report does not apply to the sample description.

This report may not be reproduced except in full.

Tested By: B.J. Lippers & A.P. Julius

Date: 19 to 26-Aug-11

Transcriptions Checked By:

•

emplie

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	f/m SAND with trace of silt	Sample Source:	TP:10 @ 1.0m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	3-Aug-11 @ 8.30am	Sample Method:	Test Pit			

WATER CONTENT - NZS 4402:1986, Test 2.1					
Water Content: (As Received)	22.5 %				
Note: The sample received was in a natural state.					

Additional Notes:

- IANZ endorsement of this report applies to the samples as received.
- IANZ endorsement of this report does not apply to the sample description.
 - This report may not be reproduced except in full.

emplus

Tested By: B.J. Lippers & A.P. Julius

Date: 19 to 26-Aug-11

Transcriptions Checked By:

.

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	SAND	Sample Source:	TP:12 @ 1.5m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	4-Aug-11 @ 11.00am	Sample Method:	Test Pit			

Additional Notes:

- IANZ endorsement of this report applies to the samples as received.
- IANZ endorsement of this report does not apply to the sample description.
- This report may not be reproduced except in full.

Tested By: B.J. Lippers & A.P. Julius

Date: 19 to 26-Aug-11

Transcriptions Checked By:

•

emplus

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	f/m SAND with trace of silt	Sample Source:	TP:19 @ 2.0m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	3-Aug-11 @ 11.50am	Sample Method:	Test Pit			

WATER CONTENT - NZS 4402:1986, Test 2.1					
Water Content: (As Received)	19.4 %				
Note: The sample received was in a natural state.					

Additional Notes:

IANZ endorsement of this report applies to the samples as received.

- IANZ endorsement of this report does not apply to the sample description.
- This report may not be reproduced except in full.

Tested By: B.J. Lippers & A.P. Julius

Date: 19 to 26-Aug-11

emplus **Transcriptions Checked By:**

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	SAND	Sample Source:	TP:22 @ 1.0m to 1.5m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	3-Aug-11 @ 11.00am	Sample Method:	Test Pit			

Additional Notes:

- IANZ endorsement of this report applies to the samples as received.
- IANZ endorsement of this report does not apply to the sample description.
- This report may not be reproduced except in full.

Tested By: B.J. Lippers & A.P. Julius

Date: 19 to 26-Aug-11

Transcriptions Checked By:

•

emplus

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christchurch	Attention:	James Muirson			
Job Description:	Prestons Subdivision Investigations, Prestons Road, Christchurch					
Sample Description:	f/m SAND with trace of silt	Sample Source:	TP:35 @ 1.5m			
Sampled By:	M. Derksen	Date Received:	18-Aug-11			
Date & Time Sampled:	4-Aug-11 @ 7.45am	Sample Method:	Test Pit			

WATER CONTENT - NZS 4402:1986, Test 2.1					
Water Content: (As Received)	19.5 %				
Note: The sample received was in a natural state.					

Additional Notes:

IANZ endorsement of this report applies to the samples as received.

IANZ endorsement of this report does not apply to the sample description.

This report may not be reproduced except in full.

emplus

Tested By: B.J. Lippers & A.P. Julius Date

Transcriptions Checked By:

•

Date: 19 to 26-Aug-11

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 1 of 4 Pages Reference No: 12/388 Date: 13 March 2012

TEST REPORT – PRESTON INVESTIGATIONS

Client Details:	Aurecon New Zealand Ltd, P.O. Box 1061, Christch	urch	Attention:	M. Derken
Job Description:	Preston Investigations	Sample S	Source:	CPT127 @ 8.5m to 9.3m
Sample Description:	f/c SAND with minor silt	Sampled	By:	Aurecon Staff
Date & Time Sampled:	Unknown	Sample I	Method:	СРТ

WATER CONTE	NT RESULT - NZS 4402:1986, Test 2.1								
Water Content: (As Received)	Water Content: (As Received) 11.8 %								
Note: The sample received was in a natural state.									

Note:

- IANZ endorsement of this report applies to the samples as received.
 - IANZ endorsement of this report does not apply to the sample description.
- This report may not be reproduced except in full.

Tested By: A.P. Julius

Date: 3 to 12-Mar-12

Transcriptions Checked By:

emplus

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

TEST REPORT – PRESTON INVESTIGATIONS

Client Details:		Aureco	on No	ew Zo	ealan	d Ltd	I, P.	O. Bo	x 1061	, Chri	stchurc	h	A	ttent	ion:	Μ	. Derke	n				
Job Description:		Prestor	n Inv	vestig	ation	S					Samp	ole So	ource	:		CI	CPT140 @ 4.7m to 5.9m					
Sample Descript	ion:	f/m SA	ND y	with	trace	of sil	lt				Sampled By:				Aı	irecon	Staff					
Date & Time Sar	npled:	Unkno	wn								Samp	ole M	letho	d:		CI	PT					
		NOIG	1																		_	
PARTICLE SI	LE ANAI 96 Test 2									063	.150 .212 0.30	09.0	1.18	2.36	4.75	9.50 13.2	19.0 26.5 37.5	63.0 75.0	150	, ,		
(NZS 4402:19	$\frac{86, 1 \text{ est } 2}{96, 1}$.8.1)	-	100 -			ТПТ								TT	THE	1 1 1	TUTT				Π
l est Sieve	% Pa	ssing																				
(mm)	(by h	llassj		90 -			++++				┼╢┼┼┼			1	1				1		+++	+
37.5											1		I.									
26.5				80 -								┼┼┼┢						<u>till f</u>			+++	+
19.0				70									СР	T14() (4.	7m to	o 5.9m)				
13.2				70 -																		
9.50			na ss)	60 -									1						1		+++	
4 75			(by r																			
4.75			ng L	50 -															1		+++	Ħ
2.00			ass								i i l		l i			li i		- i i l i	į.			
1.18			% F	40 -									l						I			П
0.60				30 -																\rightarrow		
0.30	10	0											I I	i i	i							
0.212	9	9		20 -															1			+
0.150	64	4		10 -																\square	$\parallel \mid$	Щ
0.075	4									o₽	1 I		I I									
0.063	4			0 - 0.0	01		().01		0.1			1			10		100)			1000
					CLAY	Fine	Ν	Medium	Coarse	Fine	Mediu	m C	Coarse	Fine		Medium	Coarse	COBE	BLES	BOUL	DERS	,
				<i>(</i> 1)				SILT	•••••••		SAN	U				GRAVEL						
				TI TI	ie mat ie perc	erial w entage	vas re e pass	ceived sing th	e 63µm 1	urat sta test siev	te. e was obi	tained	by dij	ferenc	e.							
						_																
				W	ATE	CR CO	ONT	ENT	RESU	LT - 1	NZS 44	02:19	986,]	Fest 2	.1					1		

Notas	
noie:	

- IANZ endorsement of this report applies to the samples as received.
- IANZ endorsement of this report does not apply to the sample description.

emplus

• This report may not be reproduced except in full.

Water Content: (As Received)

Note: The sample received was in a natural state.

Tested By: A.P. Julius

Date: 3 to 12-Mar-12

Transcriptions Checked By:

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

24.2 %

Specialist Quality Assurance Service in Aggregate, Concrete and Soils Testing

"Central Testing Services operates as a trading trust through Central Testing Services Limited as the sole trustee."

Appendix I ECan Logs

Borelog for well M35/1608 Gridref: M35:835-469 Accuracy : 4 (1=high, 5=low) Ground Level Altitude : 4.6 +MSD Driller : not known Drill Method : Driven Pipe Drill Depth : -64.3m Drill Date :

Scale(m)	Water Level	Depth(m ¹		Full Drillers Description	Formation Code
	Artesian	- Bobai(iii)	· · · · · · · · · · · · · · · · · · ·	Sand & clay	
-10	, atalan			Ganu & Gay	
-					
-20	_	- 30.2m			ch
-	-	- 38. 4 m		Brown shingle.best water at 33.2m	ń
-40	-	39.9m		Yellow clay	ri 📃
		46.6m		Brown shingle	ri -
_	-	40.0111	100000000	Yellow clay	
- E -	-	48.5m	MANANA	Brown sand	br
-50	_	. 51.2m	* * * * * * * *	Dioterround	br
	-	52.4m	000000000	Brown shingle	br
	-	• 59.4m		Brown sand	br
-00-1-1		R1 C-		Blue clay & sand	
	-	01.9m	00000000	Shingle.flow 227 litres,rise 3.5m	Dr
	-	64.3m	000000000000000000000000000000000000000		
					11-1

Borelog for well M35/4577 page 1 of 2 Gridref: M35:8324-4805 Accuracy : 4 (1=best, 4=worst) Ground Level Altitude : 4.9 +MSD Driller : Stevens J O Drill Method : Cable Tool Drill Depth : -40.4m Drill Date : 22/11/1984

Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
				Soil & peat	
	0.9Calc	Min			
		-2.09m			sp?
		_		Fine Blue sand	
			5 8 9 8 5 8 5 8 9 5 8 9 9 5 8 9 8 5 8 5 8 5 8 5 8 9		
-5					
			1 1 4 4 5 8 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
			n ann aisir ann ann ann 1 ga ann ann ann ann ann 1 ann ann ann ann ann ann		
-10			************* ************************		
			646 646 46 86 86 8 6 8 8 8 8 8 8 8 8 8 8 8 1 8 8 8 8 8 8 8 8		
			Las casa seconda Las casa seconda Las casa seconda		
-15	-	15.1m _			ch
		15.0		Fine sand with grit & shell flakes	L
-	-	- 15.9m _		Fine Blue sand	cn
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
H					
			••••••••••••••••••••••••••••••••••••••		
-20	_	26.2m			
	-		<u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		ch

Borelog for well M35/4577 page 2 of 2 Gridref: M35:8324-4805 Accuracy : 4 (1=best, 4=worst) Ground Level Altitude : 4.9 +MSD

Ground Level Altitude : 4.9 +MSD Driller : Stevens J O Drill Method : Cable Tool Drill Depth : -40.4m Drill Date : 22/11/1984

Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
		,		Fine Blue sand	

-25					

	-	- 26.2m		Риа	ch
				, «9	
		07.0			
	-	27.6m _ .27.9m		Peat	ch
	_	27.011 _	0::0::(Very sandy Blue & Brown gravel,grit & coarse sand.water	
		20.0m	0.0	0.46m bgl	
	-	- 29.0m _	3.0.00	Very sandy gravel	
		20 0m		, , , , , ,	ri
-30				Sandy gravel,soft Yellow clay	''
	-	30.8m			ri
		_	0:0:0:	Sandy gravel.water movement between 32.3 & 33.2m .not muc	h
			0.0.0	water movement between 35.1 & 36.0m	
_			D::0::0::		
			0.0.0		
)::0::0::(
			0:0:0:		
). O. O. (
			0:0.0		
-35			0:0:0		
-33			U O U		
	_	36 0m	0.0.0		ri
		26.6m	0:0:0:	Rust coloured gravel & sand.better water movement	
	-	- 50.0111 _	0.0.0	Rusty gravel,sandy	''
	-	· 37.2m _		Yellow clay	ri
	-	37.8m _		Puete aleveral atoms	ri
H			000000000000000000000000000000000000000	RUST COIOURED STONES	
	_	39.0m	000000000		ri
H	-	<u> </u>	00=000	Rust coloured stones.poor water movement.some clay on grave	el "
	-	39.9m	δοσοοσ		ri
-40	-	40.1m =		Narrow seam of Yellow clay.Blue gravel sandy	FI
-	-	40.2m		- Note: Blue gravel sandy	/ ri
	-	40.4m			
I					

Borelog for well M35/5690 Gridref: M35:8365-4686 Accuracy : 4 (1=best, 4=worst) Ground Level Altitude : 5.8 +MSD Driller : McMillan Water Wells Ltd Drill Method : Rotary/Percussion Drill Depth : -36m Drill Date : 30/06/1987

Concerning Concerning Concerning Concerning	Scale(m)	Water		Full Drillers Description	Formation
2.00m -2.00m -2.00m -2.00m -10 -10 -10 -10 -10 -15 -17.0m -15 -17.0m -15 -17.0m -15 -17.0m -15 -17.0m -16 -17.0m -17.0m -17.0m -18 -19 -19 -19 -10 -10 -17.0m -18 -17.0m -18 -17.0m -18 -19 -19 -19 -19 -10 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -18 -17.0m -20 -28.0m -28.0m -28.0m -33.0m -00000000 Brown stained gravel -33.0m -00000000 Brown stained gravel -38.0m -38.0m -200000 -200000 -200	Scale(III)			S Farth	
s - 200m Blue sand -10 -10 -10 -10 -10 -10 -10 -10			+ + + + + + + + +	Brown sand	
-1 -1 <td< td=""><td></td><td>-2.00m</td><td></td><td></td><td>ch</td></td<>		-2.00m			ch
-5 -10 -10 -10 -10 -10 -10 -10 -10		-	<u>`****************</u>	Blue sand	
-5 -10 -10 -10 -15 -17.0m -20 -20 -20 -20 -20 -20 -20 -20					
-10 -10 -10 -10 -10 -10 -10 -10					
-10 .10 .10 .11 .15 .17.0m .17.0m .11.0m .20 .17.0m .11.0m .11.0m .20 .11.0m .11.0m .11.0m .11.0m .21.0m .11.0m .11.0m .11.0m .11.0m .31.0m .11.0m .11.0m .11.0m .11.0m .31.0m .11.0m .11.0m .11.0m	e l				
10 10 10 10 10 10 10 10 10 10	-9 _ -				
-10 -10 -15 -17.0m	H				
-10 -10 -15 -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -28.0m -28.0m -28.0m -28.0m -33.0m -33.0m -38.0m					
-10 -15 -17.0m -17.					
-10 -15 -17.0m -20 -25 -28.0m -28.0m -28.0m -28.0m -28.0m -31.5m -31.5m -31.5m -33.0m -3000000000 Brown stained gravel -33.0m -3000000000 Brown stained gravel -36.0m -36.0m -36.0m -37.0m -38.	H				
.10 .15 .17.0m Grey sand ch .20 .17.0m Grey sand ch .21 .22 .26.0m Ch Ch .22 .28.0m Fine Brown wood ch ch .30 .31.5m .30.0m OOOOOOOO Medium Blue gravel ch .33.0m .30.0m OOOOOOOO Brown stained gravel ni .36 .36.0m .36.0m ri					
.15. .17.0m	-10				
-15 -17.0m -20 -20 -20 -26.0m -26.0m -28.0m -30 -31.5m -31.5m -33.0m -35. -36.0m	-10				
-15. -17.0m -20 -20 -20 -20 -20 -20 -20 -20					
-15 -17.0m -17.0m -17.0m -20 -20 -28.0m -28.0m -28.0m -28.0m -30 -31.5m -33.0m -35. -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -37.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -30.0m -31.5m -30.0m -31.5m -30.0m -31.5m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -37.					
-15 -17.0m -17.0m -17.0m -20 -20 -25 -28.0m -28.0m -28.0m -31.5m -31.5m -38.0m -36.0m -36.0m -36.0m -36.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -28.0m -28.0m -28.0m -28.0m -28.0m -31.5m -36.0m -37.0m -36.0m -37.0m -37.0m -37.0m -37.0m -37.0m -38.0m -37.0m -3					
-15. -17.0m -20. -26.0m -26.0m -28.0m -30. -30. -31.5m -31.5m -35. -36.0m -37.0m -37.0m -37.0m -37.0m -38.0m -38.0m -38.0m -38.0m -38.0m -37.0m -38.0m -38.0m -38.0m -38.0m -38.0m -36.0m -36.0m -36.0m -37.0m -37.0m -37.0m -38.0m -37.0m -38.0m -38.0m -38.0m -37.0m					
-15 -17.0m -17.0m -17.0m -17.0m -17.0m -17.0m -20 -20 -26 -28.0m -28.0m -28.0m -31.5m -31.5m -31.5m -36.0m -37.0m -36.0m -37.0m -36.0m -37.0m -36.0m -36.0m -37.0m -36.0m -37.0m -3					
-20 -20 -20 -20 -20 -20 -20 -20	-15				
-20 -20 -20 -20 -20 -20 -20 -20					
-20 -20 -20 -26 - 26.0m -28.0m -30 -31.5m -31.5m -33.0m -35 -36.0m -36.0m -11.0m	H				
-20 -25 - 26.0m - 28.0m - 28.0m - 28.0m - 31.5m - 31.5m - 31.5m - 31.5m - 33.0m - 33.0m - 35. - 36.0m - 30.0m - 30	H	- 17.0m _		Crawaand	ch
-20 -25 -28.0m -28.0m -28.0m -30 -31.5m -31.5m -31.5m -33.0m -35 -36.0m -37.0m -3				Grey sand	
-20 -25 - 26.0m - 28.0m - 28.0m - 31.5m - 31.5m - 31.5m - 31.5m - 31.5m - 33.0m - 33.0m - 33.0m - 35 - 36.0m - 37.5m - 36.0m - 37.5m - 36.0m - 36.	Π				
-20 -25 - 28.0m - 28.0m - 28.0m - 28.0m - 31.5m - 31.5m - 31.5m - 31.5m - 31.5m - 33.0m - 35. - 36.0m - 30.0m - 30	H				
-25 - 26.0m - 28.0m - 28.0m - 28.0m - 30 - 31.5m - 31.5m - 31.5m - 31.5m - 33.0m - 31.5m - 33.0m - 33.0m - 35.0m - 36.0m -	-20				
-25 -26.0m -28.0m -28.0m -30 -31.5m -31.5m -31.5m -36.0m -36.0m -36.0m -36.0m -28.0m -28.0m -36.0m -36.0m -36.0m -36.0m -36.0m -28.0m -36.0m -37.			* * * * * * * * *		
-25 -26.0m -28.0m -28.0m -30 -31.5m -31.5m -31.5m -31.5m -31.5m -31.5m -33.0m -31.5m -33.0m -35 -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -37.0m			* * * * * * * * *		
-25 - 26.0m - 28.0m - 28.0m - 31.5m - 31.5m - 31.5m - 31.5m - 31.5m - 36.0m - 36.0m			* * * * * * * * *		
-25 -26.0m -28.0m -28.0m -30 -31.5m -31.5m -35 -36.0m -36.0m -36.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -31.5m -31.5m -31.5m -31.5m -31.5m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -37.0m					
-25 -26.0m -28.0m -30 -31.5m -31.5m -35 -36.0m -36.0m -36.0m -28.0m -36.0m -36.0m -36.0m -28.0m -36.0m -36.0m -37.5m -36.0m -37.5m -36.0m -37.5m -36.0m -37.5m					
-25 - 26.0m - 28.0m - 28.0m - 31.5m - 31.5m - 31.5m - 36.0m - 36.0m - 36.0m - 28.0m - 31.5m - 31.5m - 31.5m - 36.0m - 36.0m					
-30 -30 -31.5m -31.5m -36.0m -36.0m -36.0m -28.0m -36.0m -36.0m -36.0m -36.0m -28.0m -36.0m -36.0m -36.0m -28.0m -36.0m -37.0m -36.0m -37.	-25				
-28.0m -28.0m -30 -31.5m -31.5m -33.0m -35 -36.0m -36.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -28.0m -31.5m -31.5m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -36.0m -37.5m -37.5m		- 26.0m _	* * * * * * * *		ch
-30 -31.5m -31.5m -33.0m -35 -36.0m -28.0m -28.0m -38.		_		Dark Brown wood	
-30 -31.5m -31.5m -31.5m -33.0m -35 -36.0m -36.0m -38.	Н	~~~~	500d		
-30 -31.5m -31.5m -33.0m -33.0m -35 -36.0m -36.0m -36.0m -30 -30 -31.5m -31.5m -31.5m -31.5m -33.0m -31.5m -33.0m -31.5m -3	H	- 28.0m _		Fine Drawn and	ch
-30 - 31.5m - 31.5m - 33.0m - 33.0m - 36.0m - 36.0m			• • • • • • • • • • • • • • • • • • •	Fine Brown sand	
-30_ -31.5m -31.5m -33.0m -33.0m -35_ -36.0m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -36.0m -31.5m -31.5m -36.0m -31.5m -3			***********		
- 31.5m - 31.5m 31.5m	-30				
-31.0m -33.0m -33.0m -35 -36.0m -36.0m -31.0m -35 -36.0m -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -35 -36.0m -37.0m -37.		31 5m	n in 'n al sie is ie 'n nin 'n Daar de personen de daar Daar na de gesteren de d		ch
- 33.0m - 33.0m - 35. - 36.0m - 36.0m		- 51.000	00000000	Medium Blue gravel	CII
- 35.0m 00000000 Brown stained gravel -35 - 36.0m 000000000 Brown stained gravel - 36.0m ri		22 Om			_;
-35		- 55.0m _	000000000	Brown stained gravel	
-35 36.0m					
-36.0m	25	mm	000000000		
36.0m _])OOOOOOO ri	-30		000000000		
	\Box	- 36.0m _	000000000		
					11

Borelog for well M35/6362 Gridref: M35:8293-4807

Gridref: M35:8293-4807 Ground Level Altitude 5.1 +MSD Driller : McMillan Water Wells Ltd. Drill Method: Rotary/Percussion Drill Depth : -30.5m Drill Date : 19/04/1990

Scale Depth **Drillers** Description Formation so' -0.30m Earth Brown clay -2.00m sp? Blue gravel & sand -5.00m sp? .-5 Brown sand -7.00m ch Blue sand --10 --15 - 16.0m ch Blue sand & shells _-20 --25 - 26.0m ch Peat - 27.0m ch Free gravel 0000000 0000 000 .30 - 30.5m ri

Borelog for well M35/8069 Gridref: M35:8296-4717 Accuracy : 4 (1=best, 4=worst) Ground Level Altitude : 5.1 +MSD Driller : C W Drilling and Investigations Ltd Drill Method : Hydraulic/Percussion Drill Depth : -35m Drill Date :

W Scale(m) Le	ater vel Depth(mi	3	Full Drillers Description	Formation Code
-0,	6Calc/Øiß0m		_ Topsoil	eh
			Dirty sand	
	0.50			
	-2.50m		Closp sand	ch
		* * * * * * * *	Gican sanu	
-	-4.00m	010101010	Plue cand/small gravel	ch
-5		1.0.0.0.0	Bitte Sanu/Sinan graver	
		0.0.0.0.0		
		0.0.0.0		
		.0.0.0.0		
		0.0.01		
		0.0.0.0		
		5.0.0.0.d		
-10		.0.0.0.0		
		1010101010		
		0.0.0.0.0		
		10.0.0.0		
		0.0.0.0		
15		0.0.0.0.0		
-10		0.0.0.0		
		0.0.0.C		
		*.0+'0'-0+'0- 0+.0+0+.0*0		
		0.0.0.0		
		0.0.0.0.0		
-20		0.0.0.0		
		10.0.0.0		
		.0.0.0.0		
-		0.0.0.0		
		0.0.0.0.0		
		0.0.0		
-25				
		* * * * * * * * *		
		* * * * * * * * *		
		* * * * * * * * *		
		* * * * * * * * *		
20				
-30	01.0	• • • • • • • • • •		
	- 31.Um	0000000	Mater beating arayal	ch
		000000000	water-bearing graver	
		000000000		
		000000000		
		1000000000		
	- 35.0m	0000000000		
				ri

Borelog for well M35/10124 Gridref: M35:8301-4735 Accuracy : 4 (1=high, 5=low) Ground Level Altitude : 5.97 +MSD Driller : Clemence Drilling Contractors Drill Method : Rotary/Percussion Drill Depth : -35.9m Drill Date : 25/11/2005

Formation Code Water Scale(m) Level Depth(m) Full Drillers Description very dusty sandy top soil -0.7CalcMin -1.80m clay-bound damp sand -3.00m blue water-bearing sand -4.70m -5 water-bearing sand -10 - 14.0m water-bearing sand - shells present -15 -20 -25 - 27.5m water-bearing sand - peat - 27.8m tight water-bearing gravel -30 - 31.2m silty yellow clay seam \widetilde{OC} - 31.3m lightly stained water-bearing gravel - 33.3m silty yellow clay seam - 33.4m sandy water-bearing gravel C *(*) -35 - 35.9m

Borelog for well M35/11720 Gridref: M35:8310-4785 Accuracy : 3 (1=high, 5=low) Ground Level Altitude : 6.01 +MSD Driller : Texco Drilling Ltd Drill Method : Rotary/Percussion Drill Depth : -10m Drill Date : 11/07/2007

Scale(m)	Water Level	Depth(m)	Full Drillers Description	Formation Code
			Peaty topsoil	
1		-0.50m _	Grey fine sand, moist; 5-6m trace to minor silt; 8-8.5 some shells	
2				
3				
4				
-55				
6				
7				
8				
-9		- 10.0~		
		10.0m _]

Borelog for well M35/11721 Gridref: M35:8340-4801 Accuracy : 3 (1=high, 5=low) Ground Level Altitude : 5.78 +MSD : McMillan Water Wells Ltd Driller Drill Method : Rotary/Percussion Drill Depth : -10m Drill Date : 12/07/2007

Formation Code Water Scale(m) Level Depth(m) Full Drillers Description Peaty topsoil -0.50m Grey fine sand, moist to wet; 5.5-8m trace of fine gravel - 1 -2 -3 -5 💻-5 .-6 6 ;:0 :•• ::0 ۲ -7 :0 :0 011011 :0::0 101 -8.00m -8 00000 Grey fine to coarse gravel, saturated 500000 000000 *ჂŌ*ŌŌŎ 00000 -9 20000 00000 200000 00000 - 10.0m

Appendix J Impact Compactor CPT Logs

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

CPT ANALYSIS NOTES

Soil Type

Interpretation using chart of Robertson & Campanella (1983). This is a simple but well proven interpretation using cone tip resistance (q_c) and friction ratio (f_R) only. No normalisation for overburden stress is applied. Cone tip resistance measured with the piezocone is corrected with measured pore pressure (u_c).

Liquefaction Screening

The purpose of the screening is to highlight susceptible soils, that is sand and siltsand in a relatively loose condition. This is not a full liquefaction risk assessment which requires knowledge of the particular earthquake risk at a site and additional analysis. The screening is based on the chart of Shibata and Teparaksa (1988).

High susceptibility is here defined as requiring a shear stress ratio of 0.2 to cause liquefaction with D_{50} for sands assumed to be 0.25 mm and for silty sands to be 0.05 mm.

Medium susceptibility is here defined as requiring a shear stress ratio of 0.4 to cause liquefaction with D_{50} for sands assumed to be 0.25 mm and for silty sands to be 0.05 mm.

Low susceptibility is all other cases.

Relative Density (D_R)

Based on the method of Baldi et. al. (1986) from data on normally consolidated sand.

Undrained Shear Strength (S_U)

Derived from the bearing capacity equation using $S_U = (q_C - \sigma_{VO})/15$.

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

DEPTH IN METERS BELOW GROUND LEVEL

PIEZOCONE PENETROMETER TEST (CPTU) INTERPRETIVE REPORT

MCMILLAN DRILLING SERVICES

Appendix K Impact Compactor Pre & Post CPT Logs Qc Comparisons

Appendix L Liquefaction Assessment Results

Summary of Liquefaction Results for Prestons South

Earthquake Cases:

Serviceability Limit State (SLS) EQ Case (From MBIE Guidelines) - PGA = 0.13g Mag = 7.5 Intermediate EQ Case (Based on NZS1170.2004) - PGA = 0.2g Mag = 7.5 Ultimate Limit State (ULS) EQ Case (From MBIE Guidelines) - PGA = 0.35g Mag = 7.5

2007 CPTs for Upper 10m Soil Profile

	Liqu	efactior	n Induce	d Settle	ments A	s Calcula	ated (in mm)		Lique	faction I	nduced S	ettleme	nts To tl	ne Neares	st 5mm (in mm)
	1&	B Meth. (10m)	nod	NC	EER Me ⁻ (10m)	thod	Technical Category		1&B N	Vethod	(10m)	NC	EER Me (10m)	thod	Technical Category
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT006	4	19	31	0	1	5	TC2	СРТ006	5	20	30	0	0	5	TC2
(2007)								(2007)							
CPT007	20	28	36	15	21	25	TC2	СРТ007	20	30	35	15	20	25	TC2
(2007)								(2007)							
CPT008	7	14	21	2	5	9	TC1	CPT008	5	15	20	5	5	10	TC1
(2007)								(2007)							

2011 CPTs for Upper 10m Soil Profile

	Liqu	efaction	Induce	d Settle	ments A	s Calcula	ated (in mm)		Lique	faction I	nduced S	ettleme	nts To tl	ne Neares	t 5mm (in mm)
	1&	B Meth (10m)	nod	NC	ER Me (10m)	thod	Technical Category		1&B I	Vethod	(10m)	NC	EER Me (10m)	thod	Technical Category
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT01	0	1	8	1	1	4	TC1	CPT01	0	0	10	0	0	5	TC1
CPT02	0	6	29	0	1	10	TC2	CPT02	0	5	30	0	0	10	TC2
СРТ03	0	5	19	0	2	5	TC1	СРТ03	0	5	20	0	0	5	TC1
СРТ04	1	9	25	0	1	5	TC1	СРТ04	0	10	25	0	0	5	TC1
CPT05	4	26	50	0	5	20	TC2	CPT05	5	25	50	0	5	20	TC2

	Liqu	efactior	n Induce	d Settle	ments A	s Calcula	ited (in mm)		Lique	faction I	nduced S	ettleme	nts To tl	he Neares	st 5mm (in mm)
	I&	B Meth	nod	NC	EER Me	thod	Technical		1&B I	Vethod	(10m)	NC	EER Me	thod	Technical
		(10m)			(10m)		Category						(10m)		Category
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
СРТО6	9	29	55	7	19	39	TC2	СРТО6	10	30	55	5	20	40	TC2
СРТ07	0	10	34	0	1	7	TC2	СРТ07	0	10	35	0	0	5	TC2
CPT08	0	3	20	2	9	27	TC1	CPT08	0	5	20	0	10	25	TC1
СРТО9	15	36	45	20	30	41	TC2	СРТ09	15	35	45	20	30	40	TC2
CPT10	4	22	29	1	4	15	TC2	CPT10	5	20	30	0	5	15	TC2
CPT11	0	7	23	1	4	13	TC1	CPT11	0	5	25	0	5	15	TC1
CPT12	6	22	31	3	11	18	TC2	CPT12	5	20	30	5	10	20	TC2
CPT13	0	3	21	1	1	4	TC1	CPT13	0	5	20	0	0	5	TC1
CPT14	1	9	30	0	1	5	TC2	CPT14	0	10	30	0	0	5	TC2
CPT15	12	44	63	3	12	31	TC2	CPT15	10	45	65	5	10	30	TC2
CPT16	2	13	20	0	5	10	TC1	CPT16	0	15	20	0	5	10	TC1
CPT17	6	19	33	4	10	16	TC2	CPT17	5	20	35	5	10	15	TC2
CPT18	5	16	30	2	7	13	TC2	CPT18	5	15	30	0	5	15	TC2
CPT19	0	9	38	0	0	4	TC2	CPT19	0	10	40	0	0	5	TC2
CPT20	12	35	41	7	17	27	TC2	CPT20	10	35	40	5	15	25	TC2
CPT21	2	10	27	3	6	11	TC2	CPT21	0	10	25	5	5	10	TC2
CPT22	2	5	13	10	14	15	TC1	CPT22	0	5	15	10	15	15	TC1
CPT23	1	5	12	18	27	35	TC1	CPT23	0	5	10	20	25	35	TC1
CPT24	0	1	9	0	0	1	TC1	CPT24	0	0	10	0	0	0	TC1
CPT25	1	9	39	0	2	9	TC2	CPT25	0	10	40	0	0	10	TC2
CPT26	3	27	39	3	16	30	TC2	CPT26	5	25	40	5	15	30	TC2
CPT27	0	1	12	1	3	12	TC1	CPT27	0	0	10	0	5	10	TC1
CPT28	0	4	31	0	0	3	TC2	CPT28	0	5	30	0	0	5	TC2
CPT29	5	25	44	0	0	5	TC2	CPT29	5	25	45	0	0	5	TC2
СРТЗО	7	26	49	0	2	9	TC2	СРТЗО	5	25	50	0	0	10	TC2

2012 CPTs for Upper 10m Soil Profile

	Lique	faction	Induced	Settlem	nents As	Calcula	ted (in mm)		Liquef	action I	nduced Se	ettleme	nts To th	ne Neares	t 5mm (in mm)
	81	B Meth	nod	NCE	ER Met	hod	Technical		I&B I	Method	(10m)	NC	EER Me	thod	Technical
		(10m)			(10m)		Category						(10m)		Category
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT101	3	18	39	1	4	9	TC2	CPT101	5	20	40	0	5	10	TC2
CPT102	2	14	20	1	3	9	TC1	CPT102	0	15	20	0	5	10	TC1
CPT103	1	6	20	0	1	6	TC1	CPT103	0	5	20	0	0	5	TC1
CPT104	0	2	8	0	0	2	TC1	CPT104	0	0	10	0	0	0	TC1
CPT105	1	7	17	0	2	7	TC1	CPT105	0	5	15	0	0	5	TC1
CPT106	5	21	41	3	14	20	TC2	CPT106	5	20	40	5	15	20	TC2
CPT107	0	2	16	0	0	2	TC1	CPT107	0	0	15	0	0	0	TC1
CPT108	0	3	17	0	1	6	TC1	CPT108	0	5	15	0	0	5	TC1
CPT109	0	3	15	0	0	1	TC1	CPT109	0	5	15	0	0	0	TC1
CPT110	0	3	17	1	8	21	TC1	CPT110	0	5	15	0	10	20	TC1
CPT111	0	0	9	0	0	1	TC1	CPT111	0	0	10	0	0	0	TC1
CPT112	1	11	28	1	3	11	TC2	CPT112	0	10	30	0	5	10	TC2
CPT113	1	7	31	1	4	10	TC2	CPT113	0	5	30	0	5	10	TC2
CPT114	0	0	2	0	0	0	TC1	CPT114	0	0	0	0	0	0	TC1
CPT115	1	7	31	0	1	10	TC2	CPT115	0	5	30	0	0	10	TC2
CPT116	1	9	24	1	4	10	TC1	CPT116	0	10	25	0	5	10	TC1
CPT117	0	3	11	0	0	3	TC1	CPT117	0	5	10	0	0	5	TC1
CPT118	6	15	27	1	5	8	TC2	CPT118	5	15	25	0	5	10	TC2
CPT119	2	5	9	0	1	3	TC1	CPT119	0	5	10	0	0	5	TC1
CPT120	4	6	10	0	0	1	TC1	CPT120	5	5	10	0	0	0	TC1
CPT121	9	18	34	6	12	19	TC2	CPT121	10	20	35	5	10	20	TC2
CPT122	0	6	20	0	1	4	TC1	CPT122	0	5	20	0	0	5	TC1

	Lique	faction	ion Induced Settlements As Ca Ncern Metho Ncern Metho Om) Clower Clower IT ULS SLS INT L 2 25 0 0 1 2 25 0 1 1 2 25 0 1 1 2 25 0 1 1 4 33 0 1 1 6 24 3 10 1 6 41 0 2 1 6 8 1 4				ted (in mm)		Liquef	action I	nduced S	ettleme	nts To th	ne Neares	t 5mm (in mm)
	81	B Meth	nod	NCE	ER Me	hod	Technical		I&B I	Method	(10m)	NC	EER Me	thod	Technical
		(10m)			(10m)		Category						(10m)		Category
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT123	0	2	25	0	0	3	TC1	CPT123	0	0	25	0	0	5	TC1
CPT124	0	4	33	0	1	7	TC2	CPT124	0	5	35	0	0	5	TC2
CPT125	0	7	29	0	1	5	TC2	CPT125	0	5	30	0	0	5	TC2
CPT126	6	16	24	3	10	12	TC1	CPT126	5	15	25	5	10	10	TC1
CPT127	4	26	41	0	2	10	TC2	CPT127	5	25	40	0	0	10	TC2
CPT128	0	1	6	0	1	2	TC1	CPT128	0	0	5	0	0	0	TC1
CPT129	1	5	8	1	4	6	TC1	CPT129	0	5	10	0	5	5	TC1
CPT130	0	7	26	0	1	7	TC2	CPT130	0	5	25	0	0	5	TC2
CPT131	0	1	13	0	0	1	TC1	CPT131	0	0	15	0	0	0	TC1
CPT132	9	17	20	11	18	20	TC1	CPT132	10	15	20	10	20	20	TC1
CPT133	6	16	25	2	9	13	TC1	CPT133	5	15	25	0	10	15	TC1
CPT134	0	5	21	0	2	7	TC1	CPT134	0	5	20	0	0	5	TC1
CPT135	0	0	10	0	0	1	TC1	CPT135	0	0	10	0	0	0	TC1
CPT136	0	3	26	0	0	4	TC2	CPT136	0	5	25	0	0	5	TC2
CPT137	0	9	24	0	1	6	TC1	CPT137	0	10	25	0	0	5	TC1
CPT138	0	0	1	0	0	0	TC1	CPT138	0	0	0	0	0	0	TC1
CPT139	0	1	18	0	0	1	TC1	CPT139	0	0	20	0	0	0	TC1
CPT140	1	10	30	0	0	3	TC2	CPT140	0	10	30	0	0	5	TC2
CPT141	1	13	34	0	1	5	TC2	CPT141	0	15	35	0	0	5	TC2
CPT179	0	4	25	0	1	5	TC1	CPT179	0	5	25	0	0	5	TC1

2007 CPTs for Full CPT Depth

	Liqu	efactior	Induce	d Settle	ments A	s Calcula	ated (in mm)		Lique	faction I	nduced S	ettleme	nts To tl	he Neares	t 5mm (in mm)
	I&B	Metho	d (Full	NCE	ER Me	thod			I&B	Metho	d (Full	NCEE	R Meth	od (Full	
		Depth)	(г	un Dep	un)				Depth)		Depth)	
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
СРТ006	4	19	31	0	1	5		СРТ006	5	20	30	0	0	5	
(2007)								(2007)							
СРТ007	20	28	36	15	21	25		СРТ007	20	30	35	15	20	25	
(2007)								(2007)							
СРТ008	7	14	21	2	5	9		CPT008	5	15	20	5	5	10	
(2007)								(2007)							

2011 CPTs for Full CPT Depth

	Lique	efactior	Induce	d Settle	ments A	s Calcula	ated (in mm)		Lique	faction I	nduced S	ettleme	nts To t	he Neares	st 5mm (in mm)
	I&B I	Metho	d (Full	NC	EER Me	thod			I&B	Metho	d (Full	NCEE	R Meth	od (Full	
		Depth)	(F	ull Dep	th)				Depth)		Depth)	
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT01	0	1	8	1	1	4		CPT01	0	0	10	0	0	5	
CPT02	0	10	52	0	3	16		CPT02	0	10	50	0	5	15	
СРТ03	0	5	22	0	2	5		СРТ03	0	5	20	0	0	5	
CPT04	1	9	29	0	1	6		CPT04	0	10	30	0	0	5	
CPT05	14	63	119	6	19	54		CPT05	15	65	120	5	20	55	
CPT06	9	29	60	7	19	40		CPT06	10	30	60	5	20	40	
CPT07	11	47	94	5	16	42		CPT07	10	45	95	5	15	40	
CPT08	10	40	81	2	12	48		CPT08	10	40	80	0	10	50	
CPT09	16	44	73	20	32	50		CPT09	15	45	75	20	30	50	
CPT10	13	61	122	6	17	61		CPT10	15	60	120	5	15	60	
CPT11	0	7	23	0	4	13		CPT11	0	5	25	0	5	15	
CPT12	14	47	84	6	20	42		CPT12	15	45	85	5	20	40	

	Liqu	efactior	n Induce	d Settle	ments A	s Calcula	ated (in mm)		Lique	faction I	nduced S	ettleme	nts To t	he Neares	st 5mm (in mm)
	I&B I	Metho	d (Full	NC	EER Me	thod			I&B	Metho	d (Full	NCEE	R Meth	od (Full	
		Depth)	(F	ull Dep	th)				Depth)		Depth)	
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT13	0	6	39	0	0	8		CPT13	0	5	40	0	0	10	
CPT14	7	32	73	2	8	25		CPT14	5	30	75	0	10	25	
CPT15	13	64	133	4	15	52		CPT15	15	65	135	5	15	50	
CPT16	5	35	91	1	8	31		CPT16	5	35	90	0	10	30	
CPT17	14	43	80	4	12	25		CPT17	15	45	80	5	10	25	
CPT18	13	40	78	6	7	35		CPT18	15	40	80	5	5	35	
CPT19	2	29	87	0	4	25		CPT19	0	30	85	0	5	25	
CPT20	12	37	49	7	17	30		CPT20	10	35	50	5	15	30	
CPT21	4	28	78	3	11	31		CPT21	5	30	80	5	10	30	
CPT22	4	12	25	11	16	20		CPT22	5	10	25	10	15	20	
CPT23	3	11	24	19	29	40		CPT23	5	10	25	20	30	40	
CPT24	0	4	24	0	0	4		CPT24	0	5	25	0	0	5	
CPT25	12	51	99	4	17	48		CPT25	10	50	100	5	15	50	
CPT26	3	27	39	3	16	30		CPT26	5	25	40	5	15	30	
CPT27	5	18	44	2	9	27		CPT27	5	20	45	0	10	25	
CPT28	15	60	165	5	18	57		CPT28	15	60	165	5	20	55	
CPT29	6	34	68	0	3	13		CPT29	5	35	70	0	5	15	
СРТЗО	7	32	84	0	2	14		СРТ30	5	30	85	0	0	15	

2012 CPTs for Full CPT Depth

	Lique	faction	Induced	Settlen	nents As	Calcula	ted (in mm)		Liquef	action l	nduced Se	ettleme	nts To th	ne Neares	t 5mm (in mm)
	I&B	Method	d (Full	NCE	ER Met	hod			I&B	Metho	d (Full	NCEE	R Meth	od (Full	
		Depth)		(Fi	ull Dept	th)				Depth)		Depth)	
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT101	3	18	39	1	4	9		CPT101	5	20	40	0	5	10	
CPT102	2	17	31	0	3	11		CPT102	0	15	30	0	5	10	
CPT103	2	14	50	0	3	17		CPT103	0	15	50	0	5	15	
CPT104	9	32	74	5	11	34		CPT104	10	30	75	5	10	35	
CPT105	1	11	39	0	2	11		CPT105	0	10	40	0	0	10	
CPT106	6	31	66	3	15	30		CPT106	5	30	65	5	15	30	
CPT107	0	5	28	0	0	6		CPT107	0	5	30	0	0	5	
CPT108	0	3	19	0	0	6		CPT108	0	5	20	0	0	5	
CPT109	0	3	17	0	0	1		CPT109	0	5	15	0	0	0	
CPT110	0	3	17	1	8	21		CPT110	0	5	15	0	10	20	
CPT111	0	0	11	0	0	2		CPT111	0	0	10	0	0	0	
CPT112	3	24	62	0	5	23		CPT112	5	25	60	0	5	25	
CPT113	31	67	110	1	5	19		CPT113	30	65	110	0	5	20	
CPT114	0	0	2	0	0	0		CPT114	0	0	0	0	0	0	
CPT115	29	67	112	19	36	70		CPT115	30	65	110	20	35	70	
CPT116	6	31	80	3	11	34		CPT116	5	30	80	5	10	35	
CPT117	2	13	36	0	3	14		CPT117	0	15	35	0	5	15	
CPT118	6	15	27	1	5	8		CPT118	5	15	25	0	5	10	
CPT119	2	5	9	0	1	3		CPT119	0	5	10	0	0	5	
CPT120	19	38	61	10	19	34		CPT120	20	40	60	10	20	35	
CPT121	15	42	89	9	19	43		CPT121	15	40	90	10	20	45	
CPT122	12	38	81	6	14	35		CPT122	10	40	80	5	15	35	
CPT123	4	15	62	2	7	18		CPT123	5	15	60	0	5	20	
CPT124	1	10	62	0	2	15		CPT124	0	10	60	0	0	15	

	Lique	faction	Induced	Settlen	nents As	Calcula	ted (in mm)		Liquef	action I	nduced S	ettleme	nts To th	ne Neares	t 5mm (in mm)
	I&B	Metho	d (Full	NCE	ER Met	hod			I&B	Metho	d (Full	NCEE	R Meth	od (Full	
		Depth)	(F	ull Dept	th)				Depth)		Depth)	
	SLS	INT	ULS	SLS	INT	ULS			SLS	INT	ULS	SLS	INT	ULS	
CPT125	5	22	71	3	6	21		CPT125	5	20	70	5	5	20	
CPT126	8	26	49	4	13	23		CPT126	10	25	50	5	15	25	
CPT127	18	43	66	12	16	28		CPT127	20	45	65	10	15	30	
CPT128	0	3	17	0	0	4		CPT128	0	5	15	0	0	5	
CPT129	1	9	28	1	4	11		CPT129	0	10	30	0	5	10	
CPT130	10	30	71	4	12	30		CPT130	10	30	70	5	10	30	
CPT131	1	7	38	0	2	9		CPT131	0	5	40	0	0	10	
CPT132	9	17	20	11	18	20		CPT132	10	15	20	10	20	20	
CPT133	6	16	25	2	9	13		CPT133	5	15	25	0	10	15	
CPT134	1	8	30	0	3	10		CPT134	0	10	30	0	5	10	
CPT135	7	18	45	5	1	19		CPT135	5	20	45	5	0	20	
CPT136	0	3	33	0	0	5		CPT136	0	5	35	0	0	5	
CPT137	0	10	33	0	1	7		CPT137	0	10	35	0	0	5	
CPT138	0	4	22	0	1	5		CPT138	0	5	20	0	0	5	
CPT139	0	6	42	0	0	6		CPT139	0	5	40	0	0	5	
CPT140	1	10	30	0	0	3		CPT140	0	10	30	0	0	5	
CPT141	7	35	90	3	9	27		CPT141	5	35	90	5	10	25	
CPT179	7	34	90	4	10	37		CPT179	5	35	90	5	10	35	

Assessment Against Ishihara Plot (1985)

Assessment is based on the liquefaction plots for the Idriss and Boulanger Method 0.2g Plot used for SLS & INT Earthquake Cases and 0.4g Plot used for ULS Earthquake Case

	SLS &	ULS		SLS &	ULS		SLS &	ULS		SLS &	ULS
	INT			INT			INT			INT	
СРТ006	NO	YES	CPT17	NO	YES	CPT101	NO	YES	CPT121	NO	YES
CPT007	NO	YES	CPT18	YES	YES	CPT102	NO	YES	CPT122	NO	NO
CPT008	NO	YES	CPT19	NO	YES	CPT103	NO	NO	CPT123	NO	NO
CPT01	NO	NO	CPT20	YES	YES	CPT104	NO	NO	CPT124	NO	NO
CPT02	NO	YES	CPT21	NO	NO	CPT105	NO	NO	CPT125	NO	YES
СРТОЗ	NO	YES	CPT22	NO	NO	CPT106	NO	YES	CPT126	NO	NO
CPT04	NO	YES	CPT23	NO	NO	CPT107	NO	YES	CPT127	YES	YES
CPT05	YES	YES	CPT24	NO	NO	CPT108	NO	NO	CPT128	NO	NO
CPT06	NO	YES	CPT25	NO	NO	CPT109	NO	NO	CPT129	NO	NO
СРТ07	NO	YES	CPT26	YES	YES	CPT110	NO	NO	CPT130	NO	NO
CPT08	NO	NO	CPT27	NO	NO	CPT111	NO	NO	CPT131	NO	YES
СРТО9	YES	YES	CPT28	NO	YES	CPT112	NO	YES	CPT132	NO	NO
CPT10	YES	YES	CPT29	YES	YES	CPT113	NO	NO	CPT133	NO	YES
CPT11	NO	NO	СРТЗО	YES	YES	CPT114	NO	NO	CPT134	NO	YES
CPT12	YES	YES				CPT115	NO	NO	CPT135	NO	NO
CPT13	NO	YES				CPT116	NO	NO	CPT136	NO	NO
CPT14	NO	NO				CPT117	NO	NO	CPT137	NO	YES
CPT15	YES	YES				CPT118	NO	YES	CPT138	NO	NO
CPT16	NO	YES				CPT119	NO	NO	CPT139	NO	YES
						CPT120	NO	NO	CPT140	NO	YES
									CPT141	NO	NO
									CPT179	NO	NO

Appendix M Gravel Embankment Assessments

Preston South Subdivision

235361-050-01

Gravel Embankment Assessment

Using Idriss & Boulanger Liquefaction Profiles for ULS Earthquake Event

Channel - 2m Depth

CDT Test		Depth of Liqu	efaction (m	1)	Thick	ness of Liqu	efiable Soil	s (m)
CPTTest	0-1m	1m-2m	2m-3m	3m-4m	0-1m	1m-2m	2m-3m	3m-4m
CPT12	Х	х	-	-	0.3	0.8	-	-
CPT14	-	x	-	-	-	0.5	-	-
CPT15	х	x	x (2.5m)	x (3.6m)	0.5	1.0	0.5	0.1
CPT17	х	x	-	-	0.5	0.1	-	-
CPT18	х	x	-	-	0.4	0.2	-	-
CPT19	х	x	x (2.3m)	-	0.1	1.0	0.3	-
CPT29	х	x	x (2.1m)	-	0.8	1.0	0.1	-
CPT115	-	-	-	-	-	-	-	-
CPT117	-	x	-	-	-	0.4	-	-
CPT120	-	x	-	-	-	0.1	-	-
CPT121	-	x	-	-	-	1.0	-	-
CPT122	-	x	-	-	-	0.2	-	-
CPT124	-	x	x (2.5m)	-	-	0.6	0.3	-
CPT128	-	x	-	-	-	0.2	-	-
CPT129	-	x	-	-	-	0.2	-	-
CPT133	х	x	-	x (3.7m)	0.1	0.6	-	0.2
CPT134	-	x	x (2.1m)	-	-	0.9	0.1	-
CPT136	-	x	-	x (3.8m)	-	0.2	-	0.4
CPT137	х	x	-	-	0.2	0.8	-	-
CPT138	-	-	-	-	-	-	-	-
CPT139	x	x	-	-	0.4	0.5	-	-

Southern Channel - 3m Depth

CDT Test		Depth of Liqu	efaction (m	າ)	Thick	ness of Liqu	efiable Soil	s (m)
CPTTest	0-1m	1m-2m	2m-3m	3m-4m	0-1m	1m-2m	2m-3m	3m-4m
CPT10	X	x	-	-	0.2	0.9	-	-
CPT12	X	x	-	-	0.3	0.8	-	-
CPT106	-	x	-	x (4m)	-	1.0	-	0.5
CPT112	- '	x	x (2.6m)	-	-	1.0	0.6	-

Basin - 3m Depth

CDT Test		Depth of Liqu	uefaction (m	ı)	Thick	ness of Liqu	efiable Soil	s (m)
CPTTest	0-1m	1m-2m	2m-3m	3m-4m	0-1m	1m-2m	2m-3m	3m-4m
CPT15	Х	х	x (2.5m)	x (3.6m)	0.5	1.0	0.5	0.1
CPT123	-	х	x (2.1m)	-	-	0.6	0.1	-
CPT124	-	х	x (2.5m)	-	-	0.6	0.3	-

Note: Numbers in brackets is the lowest depth of the liquefiable layer below existing ground level.

aurecon

Aurecon New Zealand Limited

Unit 1, 150 Cavendish Road Casebrook Christchurch 8051 PO Box 1061 Christchurch 8140 New Zealand

T +64 3 375 0761 F +64 3 379 6955 E christchurch@aurecongroup.com W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.

Land Use Resource Consents within 100 metres of 133 Prestons Park Drive

Note: This list does not include subdivision Consents and Certificates of Compliance issued under the Resource Management Act.

91 Prestons Park Drive

RMA/2019/233

Three double sided static billboards advertising the Prestons Park development for a duration 5 years, flexibility in location and content of display sought. One double sided billboard adjacent to the Prestons Road frontage, two double sided billboards adjacent to the Mairehau Road frontage.

Processing complete

Applied 08/02/2019

Decision issued 10/04/2019

Granted 10/04/2019

93 Prestons Park Drive

RMA/2019/233

Three double sided static billboards advertising the Prestons Park development for a duration 5 years, flexibility in location and content of display sought. One double sided billboard adjacent to the Prestons Road frontage, two double sided billboards adjacent to the Mairehau Road frontage.

Processing complete

Applied 08/02/2019

Decision issued 10/04/2019

Granted 10/04/2019

95 Prestons Park Drive

RMA/2019/233

Three double sided static billboards advertising the Prestons Park development for a duration 5 years, flexibility in location and content of display sought. One double sided billboard adjacent to the Prestons Road frontage, two double sided billboards adjacent to the Mairehau Road frontage.

Processing complete

Applied 08/02/2019

Decision issued 10/04/2019

Granted 10/04/2019

Data Quality Statement

Land Use Consents

All resource consents are shown for sites that have been labelled with an address. For sites that have been labelled with a cross (+) no resource consents have been found. Sites that have no label have not been checked for resource consents. This will be particularly noticeable on the margins of the search radius. If there are such sites and you would like them included in the check, please ask for the LIM spatial query to be rerun accordingly. This will be done free of charge although there may be a short delay. Resource consents which are on land occupied by roads, railways or rivers are not, and currently cannot be displayed, either on the map or in the list. Resource consents that relate to land that has since been subdivided, will be shown in the list, but not on the map. They will be under the address of the land as it was at the time the resource consent was applied for. Resource consents that are listed as Non-notified and are current, may in fact be notified resource consents that have not yet been through the notification process. If in doubt. Please phone (03)941 8999.

The term "resource consents" in this context means land use consents. Subdivision consents and certificates of compliance are excluded.

Subdivision Consents

All subdivision consents are shown for the sites that have been labelled with consent details. For Sites that have been labelled with a cross (+) no records have been found. Sites that have no label have not been checked for subdivision consents. This will be particularly noticeable on the margins of the search radius. If there are such sites and you would like them included in the check, please ask for the LIM spatial query to be rerun accordingly. This will be done free of charge although there may be a short delay.

The term "subdivision consents" in this context means a resource consent application to subdivide land. Non subdivision land use resource consents and certificates of compliance are excluded.

This report will only record those subdivision applications which have not been completed i.e once a subdivision has been given effect to and the new lots/properties have been established the application which created those lots will not be shown

All subdivision consent information is contained on the map and no separate list is supplied